Introduction to Mass Spectrometry Based Proteomics

> Christopher Mason Mayo Proteomics Research Center

> > MAYO CLINIC

What is Proteomics?

- A proteome is the set of all proteins expressed by an organism, organ, tissue, etc, at a given time.
- Parallel to Genome = all genes expressed in an organism, etc...
- One goal: Find a protein or proteins that indicates disease.

Motivation

- Protein Biomarkers
 - Proteins are most directly responsible for biological function.
 - RNA expression # Protein expression.
 - Post Translational Modifications (phosphorylation, glycoslyation) not observable at DNA/RNA level.
- Many diseases while treatable at early stages are still fatal at advanced stages.

 $DNA \longrightarrow RNA \longrightarrow Protein$

Motivation

- Protein Biomarkers
 - Proteins are most directly responsible for biological function.
 - RNA expression \neq^* Protein expression.
 - Post Translational Modifications (phosphorylation, glycoslyation) not observable at DNA/RNA level.
- Many diseases while treatable at early stages are still fatal at advanced stages.

$DNA \longrightarrow RNA \longrightarrow Protein$

* Not necessarily equals: Anderson, L and Seilhamer J. Electrophoresis. 1997 Mar-Apr; 18(3-4):533-7.

What is a protein?

• Proteins are *hetero-polymers*, meaning they are made of repeating chemical units with different composition.

20 possible side chains have different chemical properties.

Where might we look for proteins?

Blood Serum ^{Plasma}

"Proximal" Fluids Bile Cerebrospinal Fluid Synovial Fluid

Feces Urine

Tissue Colon Liver Pancreas Kidney Heart Prostate

Others...

Where shouldn't we look?

Challenges of Blood

Millions of molecular forms
>10¹⁰ dynamic range
Extremely diverse chemically
A few, highly abundant proteins

Dynamic Range of Human Plasma

Detectability / Sampling

Protein Species in Plasma "True" Plasma Genes: ~500 genes x 20 glycosylated 50,000 forms x 5 different "sizes" Tissue leakage: ~35,000 genes x 10 variants (splicing, 350,000 PTMs, cleavage, etc.)

Immunoglobulins

10,000,000

Anderson and Anderson. MCP 2002, I.II, 845-867.

What can we do?

Spread Proteins Out

- In Time (Time-of-Flight Mass Spec, Chromatography)
- In Space (2D-Gel)
- In Frequency (Fourier Transform Mass Spec)

Throw Proteins Away

- Filter (Molecular Weight Cut Off)
- Retain (ELISA)
- Focus (Glycoproteins)

Break Proteins Apart

- Digestion (Trypsin)
- Fragmentation (MSⁿ)

2D Gel Gingival crevicular fluid

Intact Proteins

Poly-Acrylamide Gel Electrophoresis (PAGE) separates proteins by approx molecular weight.

Iso-Electric Focusing (IEF) separates proteins by charge (pl).

I,268 spots (proteins)

What is a Mass Spectrometer? A mass spectrometer measures the mass-to-charge ratios (m/z) of molecules.

Molecules

Molecular Weight

Molecules

Apply charge (lonization)

Separate based on mass-to-charge ratio (m/z)

(Mass Analysis)

Molecules

Separate based on mass-to-charge ratio (m/z)

(Mass Analysis)

Convert these ions into current that varies in time/ frequency. (Detection)

Muddiman, Hawkridge

Ion Cyclotron Resonance

Basic Principle:

lons rotate about a magnetic field with frequency ~ I / m/z.

Important Relationships:

Calib	ration	
m	A	B
\overline{z}	= - + f	$\overline{f^2}$

Cyclotron Frequency $\omega_c = \frac{qB_0}{m}$

Resolving Power $R \sim \frac{q B_0 T_{\rm acq'n}}{m}$

Time of Flight

Basic Principle: ion flight time proportional to m/z.

Important Relationships:

Chernuschevich et al. J. Mass Spectrom. 2001; 36: 849-865. Guilhaus. J. Mass Spectrom. 1995; 30: 1519-1532.

Resolution / Resolving Power

A measure of an instrument's ability to discriminate or "resolve" peaks adjacent in mass.

 $R = \frac{m}{\Delta m_{\rm FWHM}}$

Importance of Resolving Power: Isotopes

Mr=1846

Mr=3680

<u>lsotopes</u>

(differing # of neutrons)

spacing $\sim 1/z$

¹H
 ^{99.9885%}
 ^{0.0115%}
 ¹²C
 ^{98.93%}
 ¹³C
 ^{1.07%}
 ¹⁴N
 ^{99.995%}
 ¹⁵N
 0.005%

¹⁶O
¹⁷O
^{0.038%}
¹⁸O
^{0.205%}
³²S
^{94.93%}
³³S
0.76%
³⁴S
4.29%
³⁶S
0.02%

Chromatography

Chromatography separates molecules in time based on their chemical properties.

Chromatography

Chromatography separates molecules in time based on their chemical properties.

lonization **Electrospray Ionization (ESI)** -100V Analyte in Solution Jet +1.2kV Taylor Cone or 😁 🙁 ⊗ Hydrophobic C Hydrophillic Competition for Charge

- Multiply charged species
- •Solution phase
- •Fenn et al: Nobel Prize

lonization

- Multiply charged species
- •Solution phase
- •Fenn et al: Nobel Prize

Matrix Assisted Laser Desorption Ionization (MALDI)

lonization

Matrix Assisted Laser Desorption Ionization (MALDI)

Mostly singly charged species
Solid phase
Tanaka et al: Nobel Prize

Multiply charged species

•Fenn et al: Nobel Prize

Solution phase

Mass Spec Semi-quantitative

Relative Quantification

Labeling

(made slightly heavier)

Break proteins apart

• An *endoprotease* breaks proteins into smaller *peptides* at specific residues.

 \bigcirc H₂¹⁶O \bigcirc H₂¹⁸O

Trypsin

Alphabet soup

Labeling	Separation	Ionization	Mass Analysis
(None)	2D Gel	ESI	TOF
	Reverse-	MALDI	Quadrupole
ICAT	Phase	EI/CI	FT-ICR
iTRAQ	SCX	DESI	Orbitrap
SILAC	IEF	FAB	•••
•••	•••	•••	

Experimental Overview

SCX Fraction

1-3 Chromatograms/ SCX Fraction (technical replicates)

/fr1 /fr2 /fr3..

SCX Fraction

1-3 Chromatograms/ SCX Fraction (technical replicates) Patient 30 SCX Frxns/ Patient

SCX Fraction (technical replicates) 30 SCX Frxns/ Patient

(12 best so far)

m/z

retention time

RP Chromatogram

~1,500 spectra/chromatogram 60-90 min/chromatogram

Data Size Per Patient Sample

	LTQ-FT
Peaks	~9M
Spectra	57k / 228k
Fractions	30
Total Raw Size	~I.5GB
Analysis Size (Compressed, Transient)	>20GB

Kenneth Johnson et al. ASMS 2006

How are we doing?

• HUPO: 3,020 total proteins with at least two peptides from a consortium of 18 laboratories.

G. S. Omenn et al. Proteomics 2005, 5, 3226–3245

Acknowledgments

- MPRC: Kenneth Johnson, H Robert Bergen, Rudi Chiarito.
- Biostatistics: Terry Therneau, Jeanette Eckel-Passow, Ann Oberg, Douglas Mahoney.
- CTSA/BIC: K. Sreekumaran Nair, Yan Asmann.
- Cancer Center: Janet Olson.
- David Muddiman (NCSU).
- Funding: National Institute of Diabetes and Digestive and Kidney Diseases, (R01DK 70179-2), the National Cancer Institute (R33 CA105295 to D.C.M. and R25 CA92049 to J.E.E.P.), the Lustgarten Foundation for Pancreatic Cancer Research, the James M. Kemper Biomarker Research Fund, the Gordon C. and Elizabeth W. Gilroy Fellowship in Proteomic Research, and the Mayo Clinic College of Medicine.